Q1.

					ı otai		[~]
2	(a)		mean (value of the) square of the speeds (velocities) of the atoms/particles/molecules		M1 A1	[2]
	((b)	(i)	$p = \frac{1}{3} \rho \langle c^2 \rangle$		C1	
			(ii)	$< c^2 > = 3 \times 2 \times 10^5 / 2.4 = 2.5 \times 10^5$ r.m.s speed = 500 ms ⁻¹ new $< c^2 > = 1.0 \times 10^6$ or $< c^2 >$ increases by factor of 4 $< c^2 > \propto T$ or $3/2 \ kT = 1/2 \ m < c^2 >$ $T = \{(1.0 \times 10^6) / (2.5 \times 10^5)\} \times 300$		C1 A1 C1 C1	[3]
				= 1200 K	Total	A1	[3] [8]
Q2.							
2	(a)		at al	ys the law pV/T = constant or any two named gas laws I values of p , V and T vo correct assumptions of kinetic theory of ideal gas (B1) nird correct assumption (B1)	M1 A1	[2]	
	(b)	(i)	mea	n square speed	B1	[1]	
		(ii)	$\rho = 1$	In kinetic energy = $\frac{1}{2}m < c^2 >$ $\frac{Nm}{V}$ and algebra leading to [do not allow if takes $N = 1$] $\frac{1}{2}c^2 > \frac{1}{2}kT$	M1 M1 A0	[2]	
	(c)	(i)		$6.6 \times 10^{-27} \times (1.1 \times 10^4)^2 = 3/2 \times 1.38 \times 10^{-23} \times T$ $1.9 \times 10^4 \text{ K}$	C1 A1	[2]	
		(ii)	Not	all atoms have same speed/kinetic energy	B1	[1]	
Q3.							
2	(a	id	eal ga	ed mass/ amount of gas as o, 1 each)		B2	2 [2]
	/1	1, 100 (1)					-
	(L) (I)		= pV/RT = $(2.5 \times 10^7 \times 4.00 \times 10^4 \times 10^{-6}) / (8.31 \times 290)$ = 415 mol		C1 C1 A1	ľ
		(ii	so,	ume of gas at 1.85×10^5 Pa = $(2.5 \times 10^7 \times 4.00 \times 10^4)$ / $(1.85 \times 10^8 $	D ⁵)	C1 C1 A1	l

Q4.

2 (a	(a)	molecule(s) rebound from wall of vessel / hits walls change in momentum gives rise to impulse / force either (many impulses) averaged to give constant force / pressure		B1 B1	
		or	the molecules are in random motion	B1	[3]
	(b)	(i)	$p = \frac{1}{3} \rho < c^2 >$	C1	
			$1.02 \times 10^5 = \frac{1}{3} \times 0.900 \times \langle c^2 \rangle$		
			$\langle c^2 \rangle = 3.4 \times 10^5$ $c_{\text{RMS}} = 580 \text{ m s}^{-1}$	C1 A1	[3]
		(ii)	either $< c^2 > \infty$ T or $< c^2 > = 2 \times 3.4 \times 10^5$ $c_{RMS} = 830 \text{ m s}^{-1} \text{ (allow 820)}$	C1 A1	[2]
	(c)		s depends on temperature (alone) no effect	B1 B1	[2]

Q5.

2 (a) either the half-life of the source is very long decay constant is very small or half-life >> 40 days or decay constant << 0.02 day-1 or B1 [1] (b) number of helium atoms = $3.5 \times 10^6 \times 40 \times 24 \times 3600$ = 1.21×10^{13} C1 either pV = NkT or pV = nRT <u>and</u> $n = N/N_A$ 1.5 × 10⁵ × V = 1.21 × 10¹³ × 1.38 × 10⁻²³ × 290 C₁ $V = 3.2 \times 10^{-13} \,\mathrm{m}^3$ A₁ [3] (if uses $T/^{\circ}C$ or n = 1 or n = 4, then 1 mark max for calculation of number of atoms)

Q6.

```
2 (a) (i) 27.2 + 273.15 or 27.2 + 273.2
                                                                                                                                    C<sub>1</sub>
                      300.4 K
                                                                                                                                             [2]
               (ii) 11.6 K
                                                                                                                                     A<sub>1</sub>
                                                                                                                                             [1]
          (b) (i) (\langle c^2 \rangle) is the) mean / average square speed
                                                                                                                                     B1
                                                                                                                                             [1]
               (ii) \rho = Nm/V with N explained
                                                                                                                                     B1
                      so, pV = 1/3 Nm < c^2 >
                                                                                                                                    B1
                      and pV = NkT with k explained
                                                                                                                                    B1
                      so mean kinetic energy / \langle E_K \rangle = \frac{1}{2}m\langle c^2 \rangle = \frac{3}{2}kT
                                                                                                                                    B1
                                                                                                                                             [4]
          (c) (i) pV = nRT
                      2.1 \times 10^7 \times 7.8 \times 10^{-3} = n \times 8.3 \times 290
                                                                                                                                    C<sub>1</sub>
                      n = 68 \text{ mol}
                                                                                                                                     A<sub>1</sub>
                                                                                                                                             [2]
               (ii) mean kinetic energy = 3/2 kT
                                                    = 3/2 \times 1.38 \times 10^{-23} \times 290
                                                                                                                                    C<sub>1</sub>
                                                    = 6.0 \times 10^{-21} \text{ J}
                                                                                                                                     A<sub>1</sub>
                                                                                                                                             [2]
              (iii) realisation that total internal energy is the total kinetic energy
                                                                                                                                    C<sub>1</sub>
                      energy = 6.0 \times 10^{-21} \times 68 \times 6.02 \times 10^{23}
                                                                                                                                    C<sub>1</sub>
                      = 2.46 \times 10^5 \text{ J}
                                                                                                                                     A<sub>1</sub>
                                                                                                                                             [3]
Q7.
          (a) number of atoms of carbon-12
                                                                                                                                   M1
                 in 0.012 kg of carbon-12
                                                                                                                                   A1
                                                                                                                                                [2]
           (b) pV = NkT or pV = nRT
                                                                                                                                   C1
                 substitutes temperature as 298 K
                                                                                                                                   C<sub>1</sub>
                 either 1.1 \times 10^5 \times 6.5 \times 10^{-2} = N \times 1.38 \times 10^{-23} \times 298
or 1.1 \times 10^5 \times 6.5 \times 10^{-2} = n \times 8.31 \times 298 and n = N/6.02 \times 10^{23}
                                                                                                                                   C<sub>1</sub>
                 N = 1.7 \times 10^{24}
                                                                                                                                   A1
                                                                                                                                                [4]
Q8.
           (a) amount of substance
                                                                                                                                      M1
                 containing same number of particles as in 0.012 kg of carbon-12
                                                                                                                                                    [2]
                                                                                                                                      A1
                                                                                                                                      C<sub>1</sub>
           (b) pV = nRT
                 amount = (2.3 \times 10^5 \times 3.1 \times 10^{-3}) / (8.31 \times 290)
                 +(2.3 \times 10^5 \times 4.6 \times 10^{-3}) / (8.31 \times 303)
                                                                                                                                      C<sub>1</sub>
                 = 0.296 + 0.420
                                                                                                                                      C1
                 = 0.716 \text{ mol}
                                                                                                                                      A1
                                                                                                                                                    [4]
                 (give full credit for starting equation pV = NkT and N = nN_A)
```

Q9.

2	(a)	(i)	either or	random motion constant velocity until hits wall/other molecule	B1	[1]
		(ii)	(total) volume of molecules is negligible compared to volume of containing vessel or			
			radius/o compar	(M1) (A1)	[2]	
	(b)	or ran <c²< th=""><th>c²</th><th></th><th>M1 M1 A1 A0</th><th>[3]</th></c²<>	c ²		M1 M1 A1 A0	[3]
	(c)	ten	nperature s = 580	or $c_{\text{rms}} \propto \sqrt{T}$ es are 300K and 373K m s ⁻¹ w any marks for use of temperature in units of °C instead of K)	C1 C1 A1	[3]
Q10.						
2	(a)	p, V	and Te	puation pV = constant × T or pV = nRT explained of p , V and T /fixed mass/ n is constant	M1 A1 A1	[3]
	(b)	(i)	$3.4 \times 10^{\circ}$ $n = 0.34^{\circ}$	$^{5} \times 2.5 \times 10^{3} \times 10^{-6} = n \times 8.31 \times 300$ mol	M1 A0	[1]
		(ii)		mass/amount of gas $^5 \times (2.5 + 1.6) \times 10^3 \times 10^{-6} = (0.34 + 0.20) \times 8.31 \times T$ K	C1 A1	[2]
	(c)	gas work	k done or	ened from cylinder B) to cylinder A gas in cylinder A (and no heating) hergy and hence temperature increase	B1 M1 A1	[3]

Q11.

2	(a)	(i)	1. $pV = nRT$ $1.80 \times 10^{-3} \times 2.60 \times 105 = n \times 8.31 \times 297$ n = 0.19 mol	C1 A1	[2]
			2. $\Delta q = mc\Delta T$ $95.0 = 0.190 \times 12.5 \times \Delta T$ $\Delta T = 40 \text{ K}$ (allow 2 marks for correct answer with clear logic shown)	B1 A1	[2]
		(ii)	p/T = constant (2.6 × 10 ⁵) / 297 = p / (297 + 40) p = 2.95 × 10 ⁵ Pa	M1 A0	[1]
	(b)	inte	nge in internal energy is 120 J / 25 J mal energy decreases / ΔU is negative / kinetic energy of molecules decreases emperature lower	B1 M1 A1	[3]
Q12					
2	(a))	obeys the law pV = constant \times T		[2]
	(b)	$n = (2.9 \times 10^5 \times 3.1 \times 10^{-2}) / (8.31 \times 290)$ C1 = 3.73 mol A1		[2]
	(c))	at new pressure, $n_n = 3.73 \times \frac{3.4}{2.9} \times \frac{290}{300}$ = 4.23 mol		
			change = 0.50 mol		[3]
Q13	•				
2	(a)	(i)	pV = nRT $V = (8.31 \times 300)/(1.02 \times 10^5)$	1 1 [2	2]
		(ii)	volume occupied by one atom = $0.0244 / (6.02 \times 10^{23}) = 4.06 \times 10^{-26} \text{ m}^3$	1	2]
	(b)	(i)	$F = GMm / r^{2} $ $= (6.67 \times 10^{-11} \times \{4 \times 1.66 \times 10^{-27}\}^{2}) / (3.44 \times 10^{-9})^{2} $ $= 2.49 \times 10^{-46} \text{ N} $ A	1 1 1 [3	B]
		(ii)	ratio = (4 × 1.66 × 10 ⁻²⁷ × 9.8) / 2.49 × 10 ⁻⁴⁶	1 1 [2	2]
	(c)		umption that forces between atoms are negligible	1	
			e.g. force is very much less than weight e.g. if there are forces, they are not gravitationalB	1 [2	2]

Q14.

5	(a)	change/loss in kinetic energy = change/gain in electric potential energy B1 $2 \times \frac{1}{2}mv^2 = q^2 / 4\pi\epsilon_0 r$ C1 $2 \times \frac{1}{2} \times 2 \times 1.67 \times 10^{-27} \times v^2$	
		= $(1.6 \times 10^{-19})^2 / (4\pi \times 8.85 \times 10^{-12} \times 1.1 \times 10^{-14})$ M1	[3]
	(b)	$pV = \frac{1}{2}Nm < c^2 > \text{ and } pV = NkT$	
		$\frac{1}{2} m < c^2 > = \frac{3}{2} kT$ (award 1 mark of first two if $< c^2 > not used$)	
		$\frac{1}{2} \times 2 \times 1.67 \times 10^{-27} \times (2.5 \times 10^{6})^{2} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T$	
			[4]
	(c)	e.g. this is <u>very</u> high temperature temperature found in stars (any sensible comment, 1 mark) (if T < 10 ⁶ K, should comment that too low for fusion to occur) B1	[1]
Q15	j.		
2	(a)	either pV = NkT or pV = nRT and $n = N/N_A$ C1 clear correct substitution e.g. $2.5 \times 10^5 \times 4.5 \times 10^3 \times 10^{-6} = N \times 1.38 \times 10^{-23} \times 290$ M1 $N = 2.8 \times 10^{23}$ A0 (allow 1 mark for calculation of $n = 0.467$ mol)	[2]
	(b)	(i) volume = $(1.2 \times 10^{-10})^3 \times 2.8 \times 10^{23}$ or $\frac{4}{3} \pi r^3 \times 2.8 \times 10^{23}$	
		, a	[2]
		(ii) either 4.5×10^3 cm ³ >> 0.48 cm ³ or ratio of volumes is about 10^{-4}	[2]
		[Total:	6]

Q16.

2	(a)	(i)	no forces (of attraction or repulsion) between atoms / molecules / particles						
		(ii)	sum of kinetic and potential energy of atoms / molecules due to random motion						
	(iii) (random) kinetic energy increases with temperature								
no potential energy (so increase in temperature increases internal energy)									
	/1-						44	641	
	(D)) (i)	zero				A1	[1]	
		(ii)	work done = $p\Delta$ = 4.0	V $0 \times 10^5 \times 6 \times 10^{-4}$			C1		
				0 J (ignore a	ny sign)		A1	[2]	
		(iii)	9	1		-			
			change	work done / J	heating / J	increase in internal energy / J			
			$P \rightarrow Q$	+240	-600	-360			
			$\begin{array}{c} Q \to R \\ R \to P \end{array}$	0 -840	+720 +480	+720 -360			
			(correct signs of	ocential)					
			(correct signs es (each horizontal	line correct, 1 ma	ark – max 3)		B3	[3]	
Q17	' .								
2	(-)	-4-	/ l / / -	andialan bahasa a	a alastia (idantia	al) anhana	(4)		
2	(a)	vol	ume of atoms / m		e compared to vo	olume of containing vesse			
				igible to time betw n or repulsion bet		olecules	(1) (1)		
			ms / molecules / ¡ y four, 1 each)	particles are in (co	ontinuous) rando	m motion	(1) B4	[4]	
		(an	y rour, r cuorry				D 4	[-]	
	(b)	pV	$= \frac{1}{3} Nm < c^2 > \text{ and}$	by pV = nRT or p	oV = NkT		B1		
		0		r = NkT and	$\langle E_{\rm K} \rangle = \frac{1}{2} m \langle c^2 \rangle$	•	B1		
			N/N_A or $k = F$				B1		
		<e< td=""><td>$\langle \rangle = \frac{3}{2} \times R/N_A \times$</td><td>T</td><td></td><td></td><td>A0</td><td>[3]</td></e<>	$\langle \rangle = \frac{3}{2} \times R/N_A \times$	T			A0	[3]	
	(c)	(i)	reaction represe		I-up of nucleus fr		M1		
or build-up of heavy nucleus from nuclei so fusion reaction									
		(ii)		erium nucleus will		tic energies	B1		
			_	× 8.31 / (6.02 × 10	$(2^3) \times T$		C1 A1	[3]	
$T = 5.8 \times 10^8 \text{ K}$ (use of $E = 2.4 \times 10^{-14}$ giving 1.16 × 10 ⁹ K scores 1 mark)									
		(iii)		ecular / atomic / r			64	[41	
or proton and deuterium nucleus are positively charged / repel							B1	[1]	

Q18.

2	(a	a) e.g. moving in random (rapid) motion of <u>molecules/atoms/particles</u> no intermolecular forces of attraction/repulsion volume of <u>molecules/atoms/particles</u> negligible <u>compared</u> to volume of container							
		(1		ne of collision negligible to time between collisions h, max 2)	B2	[2]			
	(b) (i) 1.	number of (gas) molecules	B1	[1]			
			2.	mean square speed/velocity (of gas molecules)	B1	[1]			
		(ii) eit an	ther $pV = NkT$ or $pV = nRT$ and links n and k and $< E_K > = \frac{1}{2}m < c^2 >$	M1				
			cle	ear algebra leading to $\langle E_K \rangle = \frac{3}{2} kT$	A1	[2]			
	(c) (i		Im of potential energy and kinetic energy of molecules/atoms/particles ference to random (distribution)	M1 A1	[2]			
		(ii		o intermolecular forces so no potential energy hange in) internal energy is (change in) kinetic energy and this is	B1				
				oportional to (change in) T	B1	[2]			
Q19	9.								
(c)	(i)	1/2	× 2	$\times 1.66 \times 10^{-27} \times (5.03 \times 10^{3})^{2} = \frac{3}{2} \times 1.38 \times 10^{-23} \times T$	C1				
				030 K	A1	[2]			
	(ii)	eit or		because there is a range of speeds some molecules have a higher speed some escape from point above planet surface	M1 A1 (M1)	[2]			
				so initial potential energy is higher	(A1)	[2]			
Q20).								
;	2 (a)		sum of potential energy and kinetic energy of atoms/molecules/particles eference to random	M1 A1	[2]			
		(r ii	no intermolecular forces no potential energy internal energy is kinetic energy (of random motion) of molecules reference to random motion here then allow back credit to (i) if M1 scored)	B1 B1 B1	[3]			
	(ic energy ∞ thermodynamic temperature r temperature in Celsius, not kelvin so incorrect	B1				
				mperature in Ceisius, not kelvin so incorrect	B1	[2]			

```
1 (a) (i) number of molecules
                                                                                                                                                                                                                                                                                                                                                                                                  B1
                                                                                                                                                                                                                                                                                                                                                                                                                      [1]
                                           (ii) mean square speed
                                                                                                                                                                                                                                                                                                                                                                                                   B1
                                                                                                                                                                                                                                                                                                                                                                                                                          [1]
                           (b) (i) 1. pV = nRT
                                                                                                                                                                                                                                                                                                                                                                                                  C<sub>1</sub>
                                                                               n = (6.1 \times 10^5 \times 2.1 \times 10^4 \times 10^{-6}) / (8.31 \times 285)
                                                                                                                                                                                                                                                                                                                                                                                                  C<sub>1</sub>
                                                                              n = 5.4 \, \text{mol}
                                                                                                                                                                                                                                                                                                                                                                                                   A1
                                                                                                                                                                                                                                                                                                                                                                                                                          [3]
                                                               2. either N = nN_A
                                                                                = 5.4 \times 6.02 \times 10^{23}
                                                                                                                                                                                                                                                                                                                                                                                                  C<sub>1</sub>
                                                                                = 3.26 \times 10^{24}
                                                                                                                                                                                                                                                                                                                                                                                                  A1
                                                                               pV = NkT
                                                                              N = (6.1 \times 10^5 \times 2.1 \times 10^4 \times 10^{-6}) / (1.38 \times 10^{-23} \times 285)

N = 3.26 \times 10^{24}
                                                                                                                                                                                                                                                                                                                                                                                             (C1)
                                                                                                                                                                                                                                                                                                                                                                                             (A1)
                                                                                                                                                                                                                                                                                                                                                                                                                          [2]
                                           (ii) either 6.1 \times 10^5 \times 2.1 \times 10^{-2} = \frac{1}{3} \times 3.25 \times 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 4 \times 1.66 \times 10^{-27} \times < c^2 > 10^{24} \times 10^{-27} \times < c^2 \times 10^{-27} \times <
                                                                                                                                                                                                                                                                                                                                                                                                  C<sub>1</sub>
                                                               < c^2 > = 1.78 \times 10^6
                                                                                                                                                                                                                                                                                                                                                                                                  C<sub>1</sub>
                                                               c_{RMS} = 1.33 \times 10^3 \,\mathrm{m \, s^{-1}}
                                                                                                                                                                                                                                                                                                                                                                                                  A1
                                                               ^{1}/_{2} \times 4 \times 1.66 \times 10^{-27} \times (c^{2}) = ^{3}/_{2} \times 1.38 \times 10^{-23} \times 285
                                                                                                                                                                                                                                                                                                                                                                                             (C1)
                                                               \langle c^2 \rangle = 1.78 \times 10^6
                                                                                                                                                                                                                                                                                                                                                                                            (C1)
                                                               c_{RMS} = 1.33 \times 10^3 \,\mathrm{m \, s^{-1}}
                                                                                                                                                                                                                                                                                                                                                                                            (A1)
                                                                                                                                                                                                                                                                                                                                                                                                                          [3]
Q22.
             2 (a) (i) N: (total) number of molecules
                                                                                                                                                                                                                                                                                                                                                                                          B1
                                                                                                                                                                                                                                                                                                                                                                                                                             [1]
                                              (ii) \langle c^2 \rangle: mean square speed/velocity
                                                                                                                                                                                                                                                                                                                                                                                         B1
                                                                                                                                                                                                                                                                                                                                                                                                                             [1]
                              (b) pV = \frac{1}{3}Nm < c^2 > = NkT
                                                (mean) kinetic energy = \frac{1}{2} m<c^2>
                                                                                                                                                                                                                                                                                                                                                                                          C1
                                                algebra clear leading to \frac{1}{2} m < c^2 > = (3/2)kT
                                                                                                                                                                                                                                                                                                                                                                                         A1
                                                                                                                                                                                                                                                                                                                                                                                                                              [2]
                                                                                                    energy required = (3/2) \times 1.38 \times 10<sup>-23</sup> \times 1.0 \times 6.02 \times 10<sup>23</sup>
                              (c) (i) either
                                                                                                                                                                                                                                                                                                                                                                                          C<sub>1</sub>
                                                                                                                                                                     = 12.5 J (12J if 2 s.f.)
                                                                                                                                                                                                                                                                                                                                                                                         A1
                                                                                                                                                                                                                                                                                                                                                                                                                              [2]
                                                                                                     energy = (3/2) \times 8.31 \times 1.0
                                                                                                                                                                                                                                                                                                                                                                                         (C1)
                                                                   or
                                                                                                                                  = 12.5 J
                                                                                                                                                                                                                                                                                                                                                                                         (A1)
                                              (ii) energy is needed to push back atmosphere/do work against
                                                                                                                                                                                                                                                                                                                                                                                         M1
                                                                 so total energy required is greater
                                                                                                                                                                                                                                                                                                                                                                                         A1
                                                                                                                                                                                                                                                                                                                                                                                                                              [2]
```

Q23.

```
2 (a) (i) sum of kinetic and potential energies of the molecules
                                                                                                                                       M1
                      reference to random distribution
                                                                                                                                        A1
                                                                                                                                                [2]
               (ii) for ideal gas, no intermolecular forces
                                                                                                                                       M1
                      so no potential energy (only kinetic)
                                                                                                                                                [2]
                                                                                                                                        A1
         (b) (i) either change in kinetic energy = 3/2 \times 1.38 \times 10^{-23} \times 1.0 \times 6.02 \times 10^{23} \times 180
                                                                                                                                       C<sub>1</sub>
                                                                   = 2240J
                                                                                                                                        A1
                                                                                                                                                [2]
                              R = kN_A
                      or
                              energy = 3/2 \times 1.0 \times 8.31 \times 180
                                                                                                                                      (C1)
                                           = 2240 J
                                                                                                                                      (A1)
               (ii) increase in internal energy = heat supplied + work done on system
                                                                                                                                        B1
                      2240 = energy supplied - 1500
                                                                                                                                        C<sub>1</sub>
                      energy supplied = 3740J
                                                                                                                                        A1
                                                                                                                                                [3]
Q24.
           (a) the number of atoms
                                                                                                                                   M1
                 in 12 g of carbon-12
                                                                                                                                   A1
                                                                                                                                            [2]
           (b) (i) amount = 3.2/40
                                  = 0.080 \text{ mol}
                                                                                                                                   A1
                                                                                                                                           [1]
                (ii) pV = nRT
                       p \times 210 \times 10^{-6} = 0.080 \times 8.31 \times 310
                                                                                                                                   C<sub>1</sub>
                       p = 9.8 \times 10^5 \, \text{Pa}
                                                                                                                                   A1
                                                                                                                                           [2]
                             (do not credit if T in °C not K)
               (iii) either pV = 1/3 \times Nm < c^2 >
                                N = 0.080 \times 6.02 \times 10^{23} (= 4.82 \times 10^{22})
                                and m = 40 \times 1.66 \times 10^{-27} (= 6.64 × 10<sup>-26</sup>)
                                                                                                                                   C<sub>1</sub>
                                 \overline{9.8 \times 10^5 \times 210 \times 10^{-6}} = 1/3 \times 4.82 \times 10^{22} \times 6.64 \times 10^{-26} \times < c^2 >
                                                                                                                                   C<sub>1</sub>
                                 \langle c^2 \rangle = 1.93 \times 10^5
                                 c_{RMS} = 440 \text{ m s}^{-1}
                                                                                                                                   A1
                                                                                                                                           [3]
                                 Nm = 3.2 \times 10^{-3}
                                                                                                                                   (C1)
                                9.8 \times 10^{5} \times 210 \times 10^{-6} = 1/3 \times 3.2 \times 10^{-3} \times < c^{2} >
                                                                                                                                   (C1)
                                 \langle c^2 \rangle = 1.93 \times 10^5
                                 c_{\rm RMS} = 440 \text{ m s}^{-1}
                                                                                                                                   (A1)
                                 1/2 m < c^2 > = 3/2 kT
                       or
                                                                                                                                   (C1)
                                 1/2 \times 40 \times 1.66 \times 10^{-27} < c^2 > = 3/2 \times 1.38 \times 10^{-23} \times 310
                                                                                                                                   (C1)
                                 \langle c^2 \rangle = 1.93 \times 10^5
                                 c_{\rm RMS} = 440 \text{ m s}^{-1}
                                                                                                                                   (A1)
```

at at the second of the second

(if T in °C not K award max 1/3, unless already penalised in (b)(ii))

Q25.

